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Module-4: Urysohn’s Lemma

Now we shall gradually move to Urysohn Metrization Theorem. In this course we

shall require the famous Urysohn’s Lemma. We have already given a version of Urysohn’s

lemma for metric space. But that depends completely on the metric. In this module we

shall present a general version of Urysohn’s lemma.

Theorem 1 (Urysohn’s Lemma). A space X is normal if and only if for any two disjoint

closed sets E and F there exists a continuous functions f : X :→ R such that

f(E) = 0 and f(F ) = 0.

This is a deep Theorem, both from the point of view that its proof, which involves

really original idea, also from the point of view of its application.

Proof. Let X be a normal space. Set V = X \ F , an open set containing E. Then by

normality criteria there exists an open set U 1
2

such that

E ⊂ U 1
2
⊂ U 1

2
⊂ V.

By successive application of normality criteria gives that there exist open sets U 1
4

and U 3
4

such that

E ⊂ U 1
4
⊂ U 1

4
⊂ U 1

2
⊂ U 1

2
⊂ U 3

4
⊂ U 3

4
⊂ V.

Continuing this manner for each dyadic rational number r ∈ (0, 1), an open set Ur

such that

Ur ⊂ Us, 0 < r < s < 1,
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E ⊂ Ur, 0 < r < 1,

Ur ⊂ V, 0 < r < 1.

With this information we shall now go to define the function f .

f(x) =

 0 if x ∈ Ur for all r > 0

sup{r : x 6∈ Ur}

Evidently 0 ≤ f ≤ 1, f = 0 on E and f = 1 on F . It suffices to show that f is

continuous.

Let x ∈ X. For convenience, we assume that 0 < f(x) < 1, the case f(x) = 0 and

f(x) = 1 are not difficult. Let ε > 0. Choose dyadic rational number 0 < r < s < 1 and

f(x)− ε < r < f(x) < f(x) + ε.

Then x 6∈ Ut for dyadic rational numbers between r and f(x), so that x 6∈ U r. On

the otherhand x ∈ Us. Hence W = Us \U r is an open neighborhood of x. If y ∈ W , then

from the definition of f we see that r ≤ f(x) ≤ s. In particular, |f(x) − f(y)| < ε for

y ∈ W , so that f is continuous at x.

Recall that A is a Gδ set in a space X if A is the intersection of a countable collection

of open sets of X. In metric space all closed sets are Gδ sets. But this is not true in

general. In normal space we have the following Theorem.

Theorem 2. Let X be normal space. There exists a continuous function f : X → [0, 1]

such that f(x) = 0 for x ∈ A, and f(x) > 0 for x 6∈ A, if and only if A is a closed Gδ set

in X.

Proof. Suppose there exists a continuous function f : X → [0, 1] such that f(x) = 0

for x ∈ A, and f(x) > 0 for x 6∈ A. Then A = f−1(0) must be closed. Now A =⋂
n f

−1(− 1
n
, 1
n
) and each f−1(− 1

n
, 1
n
) is an open set. Hence A is a Gδ set also.

Conversely let A be a closed Gδ set. Then there exists a sequence (Un) of open sets such

that A =
⋂
n Un. Then for each n there exists a continuous function fn which vanishes
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on A and equal to 1 on X − Un. Now take

f =
∑
n

|fn|
2n

.

Then clearly f is continuous and serves our purpose.

Now we are in a position to prove the coveted Urysohn Metrization Theorem.

Theorem 3. Every regular second countable space is metrizable.

Proof. We know that any regular second countable space X is normal so that we can

invoke Urysoh’s lemma. Let B = {Bn : n ∈ N} be a countable base. Then for any

m,n ∈ N if Bm ⊂ Bn there exists some f ∈ C∗(X) such that f(Bm) = 0 and f(Bn) = 1.

In this way we get a countable collention of functions say {fn : n ∈ N} which does the

above job. We define e : X → RN to be πn (e(x)) = fn(x). We shall prove that e is an

embedding. Continuity follows from the fact that each factor map fn is continuous. If

x 6= y then there exists BmBn ∈ B such that x ∈ Bm, y 6∈ Bn and Bm ⊂ Bn. So there

exists some fk such that fk(x) = 0 and fk(y) = 1.

It’s remain to show that e : X → e(X) is open. Let U be open in X, then we need

to show that set e(U) is open in e(X). Let v ∈ e(U). We have to find an open set W

of e(X) such that v ∈ W ⊂ e(U). Let u be the point of U such that e(u) = v. Choose

an index N for which fN(u) > 0 and fN(X − U) = {0}. Take the open ray (0,+∞) in

R, and let V be the open set π−1
N ((0,+∞)) of RN. We claim that v ∈ W ⊂ e(U) First,

v ∈ W because πN(u) = πN (e(u)) = fN(u) > 0. Second, W ⊂ e(U). For if z ∈ W , then

z = e(x) for some x ∈ X, and πN(z) ∈ (0,+∞). Since πN(z) = πN (e(x)) = fN(x), and

fN vanishes outside U the point x must be in U . Then z = e(x) is in e(U) as desired.

Thus e is an imbedding of X in RN.

Definition 1. If E and F be two disjoint closed sets in a space X and there exists a

continuous functions f : X :→ R such that f(E) = 0 and f(F ) = 0. We say that E and

F can be separated by a continuous function.

The Urysohn lemma says that if every pair of disjoint closed sets in X can be separated

by disjoint open sets, then each such pair can be separated by a continuous function. The

converse is trivial, for if

f(E) = 0 and f(F ) = 0.
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is the function, then f−1[0, 1
3
) and and f−1(2

3
, 0] are disjoint open sets containing A and

B, respectively.

This fact leads to the analogue question for regular spaces, that is whether regularity

is equivalent with the fact that points and closed sets can be separated by continuous

functions. Unfortunately this does not hold in general, an example will be provided latter.

This fact leads to the following definition.

Definition 2. A space X is said to be Completely Regular if all finite sets are closed and

for any x ∈ X and a closed sets F not containing x, there exists a continuous functions

f : X :→ R such that

f(x) = 0 and f(F ) = 0.

This is quite clear that Completely regular spaces are regular and normal spaces are

Completely Regular.

Theorem 4. A subspace of a completely regular space is completely regular.

Proof. Let X be a completely regular, let Y be a subspace of X. Let x be a point of Y ,

and let K be a closed set of Y disjoint from x. We choose a closed set in X such that

K = H∩Y . Therefore x /∈ H. Since X is completely regular, we can choose a continuous

function f : X → R such that f(x) = 1 and f(H) = 0. The restriction of f to Y is

desired continuous function on Y .

Theorem 5. Product of completely regular spaces is completely regular.

Proof. Let X =
∏
Xα be a product of completely regular spaces. Let x = (xα) be a

point of X and let U be a open set of X containing x. Then U =
∏
Uα, where each

Uα is open in Xα and Uα = Xα except for finitely many α’s, say, α1, α2, . . , αk. Then

for each αi we can choose continuous function fi : X → R such that fαi
(xαi

) = 1 and

fαi
(Xαi

\ Uαi
) = 0. Now let us set φαi

= fαi
◦ παi

. Then each φαi
is continuous from

X to R. If we set φ = φα1 .φα2 . . . .φαk
, then it is easy to observe that φ(x) = 1 and

φ(X \ U) = 0.
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